A Simplified Microscopic Particulate Analysis for use in GARP Determination

Peter Wallis¹, Chelton van Geloven², Dave Tamblyn³ and Catherine Henry⁴

- 1. Hyperion Research Ltd., 1008 Allowance Ave. SE, Medicine Hat, AB T1A 3G8
- 2. Ministry of Forests, Lands and Natural Resource Operations, 499 George St., Prince George, BC V2L 1R5
- 3. Northern Health, 1600 Third Ave, Prince George, BC V2L 5B8
- 4. Catherine Henry Environmental Consulting, 2017 Willowview Dr., Dawson Creek, BC V1G 2S6

BACKGROUND: Filtering more water does not improve risk prediction

MPA-1623: Better filtration & elution technology saves field time and improves results

Project Objectives

- Test the idea that MPA risk can be estimated from a small, grab sample at Level 2 in a GARP determination
- Evaluate the contribution of turbidity to risk
- Ask, can MPA risk be correlated with geochemical measurements in the field or bacteriology that could be collected at Level 1 (GARP screening)?

Samples were collected from 113 wells and springs. 2 L grab samples were examined by microscopy as a screening tool for risk ("mini"-MPA).

RESULTS

_	Spi	rings	Wells			
Predicted Risk	Developed Undeveloped		Drilled	Dug		
High	5	9	1*	0		
Medium	6	4	8	0		
Low	9	2	66	2		

^{*} Hair, probably rodent, was found in this well!

What we saw under the microscope:

- Lots of iron, silica and clay Minerals

- Sometimes diatoms

- And other algae

- Rotifers

Rotifer https://youtu.be/eVyTJdFifEl

- Plant debris was common

- Other interesting objects

Turbidity alone was <u>not</u> closely related to Total Coliforms, *E. coli*, TOC or TSS

But all samples that scored high risk contained either *E. coli* or Total Coliforms

Low Risk: 12 positive out of 68

Medium Risk 3 positive out of 12

High Risk 10 positive out of 11

And so did some that scored low to medium N = 91

But, does simplified MPA duplicate standard coliform bacteria testing?

- NO, because sewage contamination may not contain algae etc.
- Simplified MPA is barely correlated with coliform testing:
 - Pearson correlation coefficient (r)
 - r (SMPA, Ecoli) = -0.07 (N=45) ... negative!
 - r (SMPA,Total coliform)= + 0.13 (N=45)

Positive ORP seems to be related to risk but higher turbidity is NOT.

So, can any analytical parameters predict pathogen risk (GARP)?

- GARP guideline suggests that Turbidity and Total Organic Carbon are risk factors
 - suggests differentiating organic turbidity from inorganic turbidity ... how?
- Risk modelled as a function of
 - Simplified MPA score (low=0, med=1, high=2)
 - E.coli, Total Coliforms (MPN/dL)
- definitions:
 - BactiRisk = $f(\log_{10} E.coli, \log_{10} TC)$
 - CombiRisk = BactiRisk + Simplified MPA score
 - Suspended Organic Carbon (SOC) = Total (TOC) Dissolved (DOC)

Number crunching looking for association

Statistic	logTurb	EC/1000	SOC	Temp	DOC	Redox	logDO	TOC	TSS	рН
Slope (m _i)	0.53	-0.27	0.59	0.117	-0.06	0.0015	0.2159	-0.05	-0.009	0.07
SE(m _i)	0.21	0.12	0.51	0.119	0.066	0.0016	0.2424	0.065	0.0187	0.18
t	2.49	2.23	1.17	0.99	0.92	0.90	0.89	0.75	0.48	0.37
r ²	0.067	0.057	0.031	0.011	0.019	0.009	0.009	0.013	0.005	0.002
df	86	82	43	86	43	86	86	43	43	86
P-value (0.01	0.01	0.12	0.16	0.18	0.18	0.19	0.23	0.32	0.36

- Single variable linear regression
 - CombiRisk = mX + b + ε
- Most significant factors:
 - Turbidity
 - Electrical conductivity
 - Suspended organic carbon

Not Very Good by Themselves

- high Turbidity
- low Electrical Conductivity
 - orTDS
- high Suspended Organic Carbon
 - not TOC or DOC alone

How About Turbidity, EC, and SOC Together?

- 3-variable linear regression
- CombiRisk = $m_1 \log Turb + m_2 EC + m_3 SOC + b + \epsilon$
- BETTER BUT STILL NOT VERY CONVINCING
- the best model based on analytical chemistry cannot predict (Simplified) MPA and bacti testing.

Conclusions

- Filtering large volumes of water does not make an MPA test more sensitive
- If surface water organisms or coliforms can be detected in 2L of water, it's
- Wells with positive ORP, especially springs, are more likely to contain surface water organisms
- Suspended organic carbon (SOC = TOC DOC) better GARP predictor than either TOC or DOC
- Even the best field parameters (Turbidity, Electrical conductivity, ORP) and analytical parameters (SOC, TSS) may not be reliable GARP predictors
- DRAFT Best Available Technology:
 - => hydrogeology, microscopy, and bacteriological monitoring

Questions?

www.hyperionlab.ca